PYTHAGORAS

Finding the length of the hypotenuse:

$$c^2 = a^2 + b^2$$

or:
$$c = \sqrt{a^2 + b^2}$$

Finding the length of a shorter side:

$$a^2 = c^2 - b^2$$

$$b^2 = c^2 - a^2$$

or:
$$a = \sqrt{c^2 - b^2}$$

or:
$$b = \sqrt{c^2 - a^2}$$

TRIGONOMETRY

SOH-CAH-TOA

$$(\mathbf{SOH}) = \sin \theta = \frac{Opposite\ side}{Hypotenuse}$$

$$\theta = \sin^{-1}(\frac{Opposite \, side}{Hypotenuse})$$

Opposite side = $Hypotenuse \times \sin \theta$

 $Hypotenuse = \frac{Opposite \, side}{\sin \theta}$

$$(CAH) = \cos \theta = \frac{Adjacent\ side}{Hypotenuse}$$

$$\theta = \cos^{-1}(\frac{Adjacent \, side}{Hypotenuse})$$

Adjacent side = Hypotenuse $\times \cos \theta$

 $Hypotenuse = \frac{Adjacent \ side}{\cos \theta}$

$$(TOA) = \tan \theta = \frac{Opposite \ side}{Adjacent \ side}$$

$$\theta = \tan^{-1}(\frac{Opposite \, side}{Adjacent \, Side})$$

Opposite side = Adjacent side $\times \tan \theta$

 $Adjacent\ side = \frac{Opposite\ side}{\tan\theta}$

Bearings

True Bearings:

__ __ ° T

(0°-360°)

Conventional Bearings:

N/S _ _ °E/W

(0 - 90)

Angles of elevation of depression

Angle of elevation

Angle of depression