PYTHAGORAS

Finding the length of the hypotenuse:

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\text { or: } c=\sqrt{a^{2}+b^{2}}
\end{gathered}
$$

Finding the length of a shorter side:

$$
\begin{array}{ll}
a^{2}=c^{2}-b^{2} & b^{2}=c^{2}-a^{2} \\
\text { or: } a=\sqrt{c^{2}-b^{2}} & \text { or: } b=\sqrt{c^{2}-a^{2}}
\end{array}
$$

TRIGONOMETRY

SOH-CAH-TOA

$$
(\mathrm{SOH})=\sin \theta=\frac{\text { Opposite side }}{\text { Hypotenuse }}
$$

$\theta=\sin ^{-1}\left(\frac{\text { opposite side }}{\text { Hypotenuse }}\right) \quad$ Opposite side $=$ Hypotenuse $\times \sin \theta \quad$ Hypotenuse $=\frac{\text { opposite side }}{\sin \theta}$

$$
(\mathrm{CAH})=\cos \theta=\frac{\text { Adjacent side }}{\text { Hypotenuse }}
$$

$\theta=\cos ^{-1}\left(\frac{\text { Adjacent side }}{\text { Hypotenuse }}\right) \quad$ Adjacent side $=$ Hypotenuse $\times \cos \theta \quad$ Hypotenuse $=\frac{\text { Adjacent side }}{\cos \theta}$

$$
(\mathrm{TOA})=\tan \theta=\frac{\text { Opposite side }}{\text { Adjacent side }}
$$

$\theta=\tan ^{-1}\left(\frac{\text { opposite side }}{\text { Adjacent Side }}\right) \quad$ Opposite side $=$ Adjacent side $\times \tan \theta \quad$ Adjacent side $=\frac{\text { opposite side }}{\tan \theta}$

Bearings

True Bearings:
_-- ${ }^{\circ}{ }^{\mathrm{T}}$

Conventional Bearings:
N/S \qquad ${ }^{\circ} \mathrm{E} / \mathrm{W}$

Angles of elevation of depression

