11 GMB [CHAPTER 11: MATRICES]

Matrix:	A matrix is a rectangular array of numbers. Matrices are normally labelled
	r = 1
	Example: $A = \begin{bmatrix} 3 & 4 \end{bmatrix}$
Order of a matrix:	(Rows x Columns)
	Example: $A = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 5 & 6 \end{bmatrix}$
	column 1 column 2 column 3
Flavorata of a matrice	Order: (2 x 3)
Elements of a matrix:	Ine numbers inside a matrix. Position of an element identified by a lower case letter and two subscript numbers
	 Letter refers to a particular matrix. first number refers to row
	reference, second number refers to column reference.
	[1 2 3] $[7] $ $[9]$
	Example: $A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 8 \end{bmatrix}$ $C = \begin{bmatrix} 10 \\ 11 \end{bmatrix}$
	$a_{13} = 3$ $b_{21} = 8$ $c_{31} = 11$
	le: a_{13} = element in matrix A, position row 1 column 3
Network:	The numbers in the matrix represent the edges leading from one
	vertex to another, directly.
	$A \longrightarrow B \longrightarrow A \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
	$= B \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
	C = C = C = C
	Loops have a degree of 2 but are only considered as 1 edge
	Rows represent 'From' Columns represent 'To'
	• Sum of each row represents total paths <i>from</i> each particular vertex
Adding (subtracting	 Sum of each column represents total paths to each particular vertex
matrices:	• Two matrices can only be added and subtracted if they have the same order
	 Add or subtract the elements in the corresponding positions
	$A = \begin{bmatrix} 10 & 5 \\ 2 & -1 \end{bmatrix} B = \begin{bmatrix} 0 & -6 \\ 2 & -2 \end{bmatrix} C = \begin{bmatrix} 4 & 12 \\ 0 & -10 \end{bmatrix}$
	Example 1:
	$A + B = \begin{bmatrix} 10 + 0 & 5 + -6 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 10 & -1 \\ 0 & -1 \end{bmatrix}$
	Example 2: $l = l = l = l = l = l = l = l = l = l $
	$C = 4 = \begin{bmatrix} 4 - 10 & 12 - 5 \end{bmatrix} = \begin{bmatrix} -6 & 7 \end{bmatrix}$
Zoro motriv:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Zero matrix.	 All elements are zeros Typically labelled as 0
	 Can be any a matrix of any order
	$\begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$

Identity matrix:	Leading diagonal elements are one all other elements are zeros
	 Typically labelled as <i>I</i> Can be a square matrix of any size (square matrix: rows = columns)
	$I = \begin{bmatrix} 1 \end{bmatrix} \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Scalar multiplication:	Multiply all elements in a matrix by a specified coefficient.
	$A = \begin{bmatrix} 10 & 5\\ 8 & -1 \end{bmatrix} B = \begin{bmatrix} 0 & -6\\ 2 & 3 \end{bmatrix}$
	Example 1: 2×10^{-1} 2×5^{-1} (20×10)
	$2A = 2\begin{bmatrix} 2 \\ 8 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \times 8 \\ 2 \times -1 \end{bmatrix} = \begin{bmatrix} 16 \\ -2 \end{bmatrix}$ Example 2:
	$\begin{bmatrix} -5R \\ -5R \end{bmatrix} = \begin{bmatrix} 0 \\ -6 \end{bmatrix} = \begin{bmatrix} -5 \times 0 \\ -5 \times -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 30 \end{bmatrix}$
	$-5b = -5 \lfloor 2 \ 3 \rfloor = \lfloor -5 \times 2 \ -5 \times 3 \rfloor = \lfloor -10 \ -15 \rfloor$
Matrix multiplication:	 Two matrices can only be multiplied if the number of columns in the 1st matrix is equal to the number of rows in the 2nd matrix. If the two orders of both matrices are placed together, the inside numbers identify whether the two matrices can be multiplied (same = can be multiplied) and the outside numbers identify the resultant matrix (the order of the product) Example 1:
	$A = \begin{bmatrix} a & b \end{bmatrix} B = \begin{bmatrix} c & d \\ e & f \end{bmatrix}$
	$(1 \times 2)(2 \times 2)$ Resultant matrix: (1×2)
	Number are the same: can be multiplied
	AB = [(ac + be) (ad + bf)] Example 2:
	$C = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} D = \begin{bmatrix} m & r \\ s & t \\ u & x \end{bmatrix}$
	$(2\times3)(3\times2)$ Resultant matrix: (2×2)
	Number are the same: can be multiplied
	$CD = \begin{bmatrix} (am + bs + cu) & (ar + bt + cx) \\ (dm + es + fu) & (dr + et + fx) \end{bmatrix}$
Determinant:	• As long as the determinant <i>does not</i> equal to zero, an inverse can be found and a unique solution to simultaneous equations exists.
Denoted as: Δ , detA or $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$	$\Delta = ad - bc \qquad where: \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Example:
	$A = \begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}$
	$\Delta A = (2 \times 1) - (3 \times 4) \Delta A = -9$

Inverse:	$A^{-1} = \frac{1}{determinant} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
Denoted as:	
A^{-1}	• To find the inverse of a matrix, where the determinant $\neq 0$
	2. Change the signs of elements b and c
	3. Divide each number by the value of the determinant
	Example:
	$A = \begin{bmatrix} 3 & 0 \\ -6 & 1 \end{bmatrix}$
	$\Delta A = (3 \times 1) - (0 \times -6) \Delta A = 3$
	$A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 0 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ 2 & 1 \end{bmatrix}$
Solving simultaneous equations:	$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \times B$
	Represent equations in matrix form.
	Coefficient matrix = A
	• Answer matrix = B
	Example: $4r - 3v = 10$
	3x + y = 1
	$\begin{bmatrix} 4 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \end{bmatrix}$
	$\Delta A = (4 \times 1) - (-3 \times 3) \Delta A = 13$
	$A^{-1} = \frac{1}{13} \begin{bmatrix} 1 & 3\\ -3 & 4 \end{bmatrix}$
	$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 10 \\ 1 \end{bmatrix}$
	$ \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{13} \begin{bmatrix} (1 \times 10 + 3 \times 1) \\ (-3 \times 10 + 4 \times 1) \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 13 \\ -26 \end{bmatrix} $
	$\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} 13/13 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$
	$[y] - [-26/_{13}] - [-2]$
	$x = 1 \qquad y = -2$