Matrix:	A matrix is a rectangular array of numbers. Matrices are normally labelled with a capital letter Example: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Order of a matrix:	(Rows \times Columns) $\text { Example: } A=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \text { column } 1 & \text { column } 2 & \text { column } 3 \end{array}\right]_{\text {Order: }(2 \times 3)}^{\text {row } 1} 2$
Elements of a matrix:	- The numbers inside a matrix. Position of an element identified by a lower case letter and two subscript numbers. - Letter refers to a particular matrix, first number refers to row reference, second number refers to column reference. Example: $\begin{array}{ccc} A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right] & B=\left[\begin{array}{l} 7 \\ 8 \end{array}\right] & C=\left[\begin{array}{c} 9 \\ 10 \\ 11 \end{array}\right] \\ a_{13}=3 & b_{21}=8 & c_{31}=11 \end{array}$ le: $a_{13}=$ element in matrix A , position row 1 column 3
Network:	- The numbers in the matrix represent the edges leading from one vertex to another, directly. $\left.\left.\begin{array}{rl} & A \\ & B \\ & C \\ A & C \\ 0 & 1 \end{array}\right) 0\right]\left[\begin{array}{lll} 1 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right]$ Loops have a degree of 2 but are only considered as 1 edge - Rows represent 'From' Columns represent 'To' - Sum of each row represents total paths from each particular vertex - Sum of each column represents total paths to each particular vertex
Adding/subtracting matrices:	- Two matrices can only be added and subtracted if they have the same order. - Add or subtract the elements in the corresponding positions $A=\left[\begin{array}{cc} 10 & 5 \\ 8 & -1 \end{array}\right] B=\left[\begin{array}{cc} 0 & -6 \\ 2 & 3 \end{array}\right] C=\left[\begin{array}{cc} 4 & 12 \\ 9 & -10 \end{array}\right]$ Example 1: $A+B=\left[\begin{array}{cc} 10+0 & 5+-6 \\ 8+2 & -1+3 \end{array}\right]=\left[\begin{array}{cc} 10 & -1 \\ 10 & 2 \end{array}\right]$ Example 2: $C-A=\left[\begin{array}{cc} 4-10 & 12-5 \\ 9-8 & -10--1 \end{array}\right]=\left[\begin{array}{cc} -6 & 7 \\ 1 & -9 \end{array}\right]$
Zero matrix:	- All elements are zeros - Typically labelled as 0 - Can be any a matrix of any order $0=[0] \quad 0=\left[\begin{array}{lll} 0 & 0 & 0 \end{array}\right] \quad 0=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]$

Identity matrix:	- Leading diagonal elements are one all other elements are zeros - Typically labelled as I - Can be a square matrix of any size (square matrix: rows = columns) $I=[1] \quad I=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \quad I=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$
Scalar multiplication:	- Multiply all elements in a matrix by a specified coefficient. $A=\left[\begin{array}{cc} 10 & 5 \\ 8 & -1 \end{array}\right] B=\left[\begin{array}{cc} 0 & -6 \\ 2 & 3 \end{array}\right]$ Example 1: $2 A=2\left[\begin{array}{cc} 10 & 5 \\ 8 & -1 \end{array}\right]=\left[\begin{array}{cc} 2 \times 10 & 2 \times 5 \\ 2 \times 8 & 2 \times-1 \end{array}\right]=\left[\begin{array}{cc} 20 & 10 \\ 16 & -2 \end{array}\right]$ Example 2: $-5 B=-5\left[\begin{array}{cc} 0 & -6 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{cc} -5 \times 0 & -5 \times-6 \\ -5 \times 2 & -5 \times 3 \end{array}\right]=\left[\begin{array}{cc} 0 & 30 \\ -10 & -15 \end{array}\right]$
Matrix multiplication:	- Two matrices can only be multiplied if the number of columns in the $1^{\text {st }}$ matrix is equal to the number of rows in the $2^{\text {nd }}$ matrix. - If the two orders of both matrices are placed together, the inside numbers identify whether the two matrices can be multiplied (same = can be multiplied) and the outside numbers identify the resultant matrix (the order of the product) Example 1: $\begin{aligned} A= & {\left[\begin{array}{ll} a & b \end{array}\right] B=\left[\begin{array}{ll} c & d \\ e & f \end{array}\right] } \\ & \underset{\downarrow}{\text { (1) }} \times \underset{\downarrow}{2} \times 2 \end{aligned} \text { Resultant matrix: }(1 \times 2) .$ Number are the same: can be multiplied Example 2: $A B=\left[\begin{array}{ll} (a c+b e) & (a d+b f) \end{array}\right]$ $C=\left[\begin{array}{lll} a & b & c \\ d & e & f \end{array}\right] D=\left[\begin{array}{ll} m & r \\ s & t \\ u & x \end{array}\right]$ $\text { (2) } \times \underset{\downarrow}{3)(3) \text { (2) Resultant matrix: }(2 \times 2)}$ Number are the same: can be multiplied $C D=\left[\begin{array}{ll} (a m+b s+c u) & (a r+b t+c x) \\ (d m+e s+f u) & (d r+e t+f x) \end{array}\right]$
Determinant: Denoted as: $\Delta, \operatorname{det} \mathrm{A} \text { or }\left\|\begin{array}{ll} a & b \\ c & d \end{array}\right\|$	- As long as the determinant does not equal to zero, an inverse can be found and a unique solution to simultaneous equations exists. $\Delta=a d-b c \quad \text { where: }\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]$ Example: $\begin{gathered} A=\left[\begin{array}{ll} 2 & 3 \\ 4 & 1 \end{array}\right] \\ \Delta A=(2 \times 1)-(3 \times 4) \quad \Delta A=-9 \end{gathered}$

Inverse: Denoted as: A^{-1}	$A^{-1}=\frac{1}{\text { determinant }}\left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$ - To find the inverse of a matrix, where the determinant $\neq 0$ 1. Swap elements a and d 2. Change the signs of elements b and c 3. Divide each number by the value of the determinant Example: $\begin{gathered} A=\left[\begin{array}{cc} 3 & 0 \\ -6 & 1 \end{array}\right] \\ \Delta A=(3 \times 1)-(0 \times-6) \quad \Delta A=3 \\ A^{-1}=\frac{1}{3}\left[\begin{array}{ll} 1 & 0 \\ 6 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 / 3 & 0 \\ 2 & 1 \end{array}\right] \end{gathered}$
Solving simultaneous equations:	$\left[\begin{array}{l} x \\ y \end{array}\right]=A^{-1} \times B$ - Represent equations in matrix form. - Coefficient matrix $=\mathrm{A}$ - Answer matrix = B Example: $\begin{gathered} 4 x-3 y=10 \\ 3 x+y=1 \\ {\left[\begin{array}{cc} 4 & -3 \\ 3 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 10 \\ 1 \end{array}\right]} \\ \Delta A=(4 \times 1)-(-3 \times 3) \quad \Delta A=13 \\ A^{-1}=\frac{1}{13}\left[\begin{array}{cc} 1 & 3 \\ -3 & 4 \end{array}\right] \\ {\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{13}\left[\begin{array}{cc} 1 & 3 \\ -3 & 4 \end{array}\right]\left[\begin{array}{c} 10 \\ 1 \end{array}\right]=\frac{1}{13}\left[\begin{array}{c} (1 \times 10+3 \times 1) \\ (-3 \times 10+4 \times 1) \end{array}\right]=\frac{1}{13}\left[\begin{array}{c} 13 \\ -26 \end{array}\right]} \\ {\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 13 / 13 \\ -26 / 13 \end{array}\right]=\left[\begin{array}{c} 1 \\ -2 \end{array}\right]} \\ x=1 \\ y=-2 \end{gathered}$

