Clearing pre-set variables

It is good practice to clear all pre-set variables when starting a new question. There are 2 ways:

1. Press 'CTRL' - ' \mathbf{N} ' : this will delete all pages
2. Press: 'MENU' - ' $1:$ ACTIONS' - '4: CLEAR a - z'

Storing a matrix

- From the home menu select calculator

- Press the matrix default button:

- Select the size of the matrix you need

- The 3×3 matrix will let you create any size matrix

- Enter the matrix as it is in the question and then press the right arrow to move outside the matrix brackets:

- Press: 'CTRL' - 'STO \rightarrow ' and choose a letter that you would like to store the matrix as and press 'ENTER':

Matrix addition, subtraction and

 multiplication
Example 1:

If $A=\left[\begin{array}{cc}12 & 17 \\ 9 & 11\end{array}\right], B=\left[\begin{array}{cc}-5 & 10 \\ 6 & -8\end{array}\right], C=\left[\begin{array}{cc}14 & 18 \\ 21 & 7\end{array}\right]$ find:
a) $(A+B)+C$
h) $2 A-3 B+2 C$

- Store in the matrices from the question:

1.1	*Unsaved ∇
$\left[\begin{array}{cc}12 & 17 \\ 9 & 11\end{array}\right] \rightarrow a$	$\left[\begin{array}{cc}12 & 17 \\ 9 & 11\end{array}\right]$
$\left[\begin{array}{cc}-5 & 10 \\ 6 & -8\end{array}\right] \rightarrow b$	$\left[\begin{array}{cc}-5 & 10 \\ 6 & -8\end{array}\right]$
$\left[\begin{array}{cc}14 & 18 \\ 21 & 7 \\ 21 & 7\end{array}\right] \rightarrow c$	
l	

- Once stored you can simply type the question as it appears. Stored variables should appear in bold on your CAS when typing the equation

- a) $(A+B)+C=\left[\begin{array}{ll}21 & 45 \\ 36 & 10\end{array}\right]$
- h) $2 \mathrm{~A}-3 \mathrm{~B}+2 \mathrm{C}=\left[\begin{array}{ll}67 & 40 \\ 42 & 60\end{array}\right]$

Example 2:

If $A=\left[\begin{array}{cc}-1 & 8 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{cc}4 & -5 \\ 3 & 9\end{array}\right], C=\left[\begin{array}{cc}1 & 6 \\ -2 & 7\end{array}\right]$ find:
b) $A B+A C$
c) $A(B C)$

- Store in the matrices from the question.

Remember to clear any pre-set variables:

1.1	*Unsaved ∇
$\left[\begin{array}{cc}-1 & 8 \\ 5 & 6\end{array}\right] \rightarrow a$	$\left[\begin{array}{cc}-1 & 8 \\ 5 & 6\end{array}\right]$
$\left[\begin{array}{cc}4 & -5 \\ 3 & 9\end{array}\right] \rightarrow b$	$\left[\begin{array}{cc}4 & -5 \\ 3 & 9\end{array}\right]$
$\left[\begin{array}{cc}1 & 6 \\ -2 & 7\end{array}\right] \rightarrow c$	$\left[\begin{array}{cc}1 & 6 \\ -2 & 7\end{array}\right]$
l	

- Type the question as it appears remembering to add an x (multiply) between letters if they are multiplied between each other.
- Hint: if you simply write $A B$ the calculator will look for a something stored as $A B$ and not do $A \times B$.

- b) $\mathrm{AB}+\mathrm{AC}=\left[\begin{array}{cc}3 & 127 \\ 31 & 101\end{array}\right]$
- c) $A(B C)=\left[\begin{array}{cc}-134 & 659 \\ -20 & 431\end{array}\right]$

Determinant, inverse and solving

 simultaneous equationsDETERMINANT: Once your matrices are stored press: 'MENU' - '7: MATRIX \& VECTOR' - '3: DETERMINANT' then in the brackets but the letter of the pre-stored matrix that you wish to find the determinant of:

The determinant of matrix A is -46

- Remember an inverse exists if the determinant does not equal zero
- As long as the determinant does not equal zero a solution will exist to simultaneous equations.
- INVERSE: Once the matrices are stored, raise the matrix to the power of -1 . le: press: ‘^’ - ‘(-)’ - '1’:

- The inverse of $A=\left[\begin{array}{cc}\frac{-3}{23} & \frac{4}{23} \\ \frac{5}{46} & \frac{1}{46}\end{array}\right]$

Solving simultaneous equations

Example 3: Solve the following pair of simultaneous equations using matrices.
a) $3 x+y=5$ and $x+2 y=6$

- Write the equations in matrix form. Your first matrix is your coefficient matrix (ie. The numbers in front of the letters. Each column is a different variable (letter)) Your second matrix is your variable matrix and your third matrix will be your answer matrix

$$
\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

- Store your coefficient matrix as A and your answer matrix as B. Remember to clear all pre-set variables first.

- Multiply the inverse of matrix A with matrix B. Remember to press right after you have enter the power of -1 so ' b ' does not appear in the power.

- The solution to the equations is:

$$
x=\frac{4}{5} \text { and } y=\frac{13}{5}
$$

Transition Matrices

For transition matrices (T) you need to create your initial state matrix (S) and your transition matrix.

Example 4: At a large retail outlet 55\% of people drink coffee and 45% drink tea. The catering company has introduced a new brand of tea and market research shows that of those who drink tea 15% will change to coffee each week and of those who drink coffee 75% will change to tea each week

From:
C T

$$
T=\text { to: } \begin{aligned}
& C \\
& T
\end{aligned}\left[\begin{array}{ll}
0.25 & 0.15 \\
0.75 & 0.85
\end{array}\right]
$$

$$
S=\begin{aligned}
& C \\
& T
\end{aligned}\left[\begin{array}{l}
0.55 \\
0.45
\end{array}\right]
$$

- To find the percent of people who drink each drink after a certain period: eg after 5 weeks:

$$
T^{5} \times S=\left[\begin{array}{l}
0.166671 \\
0.833333
\end{array}\right]
$$

- To change to percent, multiply by 100
- Coffee drinkers after 5 weeks: 16.7%
- Tea drinkers after 5 weeks: 83.3%

