Clearing pre-set variables

It is good practice to clear all pre-set variables when starting a new question. There are 2 ways:

- 1. Press 'CTRL' 'N' : this will delete all pages
- 2. Press: 'MENU' '1: ACTIONS' '4: CLEAR a z'

Storing a matrix

• From the home menu select calculator

• Press the matrix default button:

• Select the size of the matrix you need

• The 3 x 3 matrix will let you create any size matrix

◀ 1.1 ▶	*Unsaved 🗢	_<
	Create a Matrix	
	Matrix	
	Number of rows 3	
	Number of columns 3	
	OK Cancel	

• Enter the matrix as it is in the question and then press the right arrow to move outside the matrix brackets:

₹ 1.1 ►	*Unsaved 🗢	<[] ×
1 3 0		
2 6 2		
		0/99

 Press: 'CTRL' – 'STO →' and choose a letter that you would like to store the matrix as and press 'ENTER':

If $A = \begin{bmatrix} 12 & 17 \\ 9 & 11 \end{bmatrix}$, $B = \begin{bmatrix} -5 & 10 \\ 6 & -8 \end{bmatrix}$, $C = \begin{bmatrix} 14 & 18 \\ 21 & 7 \end{bmatrix}$ find: a) (A + B) + C

h) 2A - 3B + 2C

Store in the matrices from the question: •

< <u>1.1</u> ▶	*Unsaved 🗢	(<mark>)</mark> 🗙
$\begin{bmatrix} 12 & 17 \\ 9 & 11 \end{bmatrix} \rightarrow a$	[12 9	17 11
$\begin{bmatrix} -5 & 10 \\ 6 & -8 \end{bmatrix} \rightarrow b$	[-5 [6	10 -8
$\begin{bmatrix} 14 & 18 \\ 21 & 7 \end{bmatrix} \rightarrow C$	14 21	18 7
I		
		3/99

Once stored you can simply type the question • as it appears. Stored variables should appear in bold on your CAS when typing the equation

• a)
$$(A + B) + C = \begin{bmatrix} 21 & 45 \\ 36 & 10 \end{bmatrix}$$

h) 2A - 3B + 2C = $\begin{bmatrix} 0, & 10 \\ 42 & 60 \end{bmatrix}$ •

Example 2:

If
$$A = \begin{bmatrix} -1 & 8 \\ 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -5 \\ 3 & 9 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 6 \\ -2 & 7 \end{bmatrix}$ find:
b) AB + AC c) A(BC)

Store in the matrices from the question. • Remember to clear any pre-set variables:

₹ 1.1 ►	*Unsaved 🗢	(<mark>1</mark> 🗙
$\begin{bmatrix} -1 & 8 \\ 5 & 6 \end{bmatrix} \rightarrow a$		-1 8 5 6
$\begin{bmatrix} 4 & -5 \\ 3 & 9 \end{bmatrix} \rightarrow b$		$\begin{bmatrix} 4 & -5 \\ 3 & 9 \end{bmatrix}$
$\begin{bmatrix} 1 & 6 \\ -2 & 7 \end{bmatrix} \rightarrow C$		$\begin{bmatrix} 1 & 6 \\ -2 & 7 \end{bmatrix}$
1		 ≫
		3/99

- Type the question as it appears remembering to • add an x (multiply) between letters if they are multiplied between each other.
- Hint: if you simply write AB the calculator will • look for a something stored as AB and not do A x B.

₹ 1.1 ►	*Unsaved マ	(<mark> </mark> 🗙
[3 9]		3 9 🗖
$\begin{bmatrix} 1 & 6 \\ -2 & 7 \end{bmatrix} \rightarrow C$		$\begin{bmatrix} 1 & 6 \\ -2 & 7 \end{bmatrix}$
a·b+a·c		$\begin{bmatrix} 3 & 127 \\ 31 & 101 \end{bmatrix}$
a·b·c		-134 659 -20 431
0		1/5

• b) AB + AC =
$$\begin{bmatrix} 3 & 127 \\ 31 & 101 \end{bmatrix}$$

c) A(BC) = $\begin{bmatrix} -101 & 001 \\ -20 & 431 \end{bmatrix}$

Determinant, inverse and solving simultaneous equations

<u>DETERMINANT</u>: Once your matrices are stored press: **'MENU' – '7: MATRIX & VECTOR' – '3: DETERMINANT'** then in the brackets but the letter of the pre-stored matrix that you wish to find the determinant of:

The determinant of matrix A is -46

- Remember an inverse exists if the determinant does not equal zero
- As long as the determinant does not equal zero a solution will exist to simultaneous equations.
- INVERSE: Once the matrices are stored, raise the matrix to the power of -1. le: press: '^' - '(-)' - '1':

Solving simultaneous equations

Example 3: Solve the following pair of simultaneous equations using matrices.

a) 3x + y = 5 and x + 2y = 6

 Write the equations in matrix form. Your first matrix is your coefficient matrix (ie. The numbers in front of the letters. Each column is a different variable (letter)) Your second matrix is your variable matrix and your third matrix will be your answer matrix

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

 Store your coefficient matrix as A and your answer matrix as B. Remember to clear all pre-set variables first.

 Multiply the inverse of matrix A with matrix
 B. Remember to press right after you have enter the power of -1 so 'b' does not appear in the power.

< 1.1 ▶	*Unsaved 🗢	<1 ×
[1 2]		1 2
$\begin{bmatrix} 5\\6 \end{bmatrix} \rightarrow b$		5 6
a ⁻¹ ·b		$\left[\frac{4}{5}\right]$
		$\left[\frac{13}{5}\right]$
		¥
		3/99

The solution to the equations is:
 4 13

$$x = \frac{4}{5}$$
 and $y = \frac{13}{5}$

Transition Matrices

For transition matrices (T) you need to create your initial state matrix (S) and your transition matrix.

Example 4: At a large retail outlet 55% of people drink coffee and 45% drink tea. The catering company has introduced a new brand of tea and market research shows that of those who drink tea 15% will change to coffee each week and of those who drink coffee 75% will change to tea each week

From:
C T

$$T = to: \frac{C}{T} \begin{bmatrix} 0.25 & 0.15\\ 0.75 & 0.85 \end{bmatrix}$$

$$S = \frac{C}{T} \begin{bmatrix} 0.55\\ 0.45 \end{bmatrix}$$

• To find the percent of people who drink each drink after a certain period: eg after 5 weeks:

$$T^5 \times S = \begin{bmatrix} 0.166671\\ 0.833333 \end{bmatrix}$$

- To change to percent, multiply by 100
 - Coffee drinkers after 5 weeks: 16.7%
 - Tea drinkers after 5 weeks: 83.3%